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Context

Turing machines with one head and one tape.
States Q.
Symbols Σ.
Transition map: Q × Σ→ Q × Σ× {−1,1}

Turing machines as a dynamical system: M : Q × ΣZ → Q × ΣZ

(the tape moves, not the head)

No specified initial state (very important)
No specified initial configuration (crucial)
Might have final states (anecdotal)
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TM as a DS

Seeing Turing machines as a dynamical system changes a lot of
things:

Interested in the behaviour starting from all configurations, not
only one configuration.
Hard to conceive of a TM with no (temporally) periodic
configurations.
Nevertheless, intricate TMs do exist.
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TM as a DS

Theorem (essentially Turing 1937)
There is no algorithm to decide whether a TM does not halt on its input
configuration.

Theorem (Hooper 1966)
There is no algorithm to decide whether a TM does not halt on some
input configuration.

simplified proof by Kari-Ollinger (2008), which leads to the
undecidability of the existence of a periodic point.
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Dynamical Systems

Part of a recent trend which sees computational models as dynamical
systems.
Good alternative to the classical Robinson technique for tilings:

Turing machines (as a Dyn. Sys.) can be easily encoded into
piecewise affine maps.
Piecewise affine maps can be easily encoded into tilings
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This talk

We will show why some thing are actually computable for 1-tape Turing
machines, namely:

its speed
its entropy
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Speed

For c a configuration, let Sn(c) be the set of (different) cells visited
during the first n steps of the computation on input c, and
sn(c) = #Sn(c)

sn(c) is (Kingman)-subadditive

sn+m(c) ≤ sn(c) + sm(Mn(c))

If d(x , y) ≤ 2−sn(x) then d(Mn(x),Mn(y)) ≤ 1/2.
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Speed

s(c) = lim sup
sn(c)

n
s(c) = lim inf

sn(c)

n

If lim inf = lim sup, we denote by s(c) the speed of c.
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Some example(s)

Consider a Turing machine that stays in the same direction when
reading a symbol a, and changes direction when reading a b
(changing it into an a)
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Some example(s)

Consider a Turing machine that stays in the same direction when
reading a symbol a, and changes direction when reading a b
(changing it into an a)

If c contains only a’s,
s(c) = 1.

t
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Some example(s)

Consider a Turing machine that stays in the same direction when
reading a symbol a, and changes direction when reading a b
(changing it into an a)

If c contains only b’s,
s(c) = 0.

t

0 nn(2n − 1)
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Some example(s)

Consider a Turing machine that stays in the same direction when
reading a symbol a, and changes direction when reading a b
(changing it into an a)

If c contains b at posi-
tions (−2)i

s(c) = 1/3, s(c) = 1/2

t

02n−2 2n2n−1
3.2n − 2

9.2n−2 − 2
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The speed

Definition

S(M) = max
c∈C

s(c) = max
c∈C

s(c) = lim
n

sup
c

sn(c)

n
= inf

n
sup

c

sn(c)

n

All definitions are indeed equivalent. This is due to compactness of the
set of configurations and subadditivity.
Note that it is a maximum, not a supremum.
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Entropy

Here is an equivalent definition, from Oprocha(2006).

For c a configuration, let T (c) be the trace of the configuration, i.e. the
sequence (states, symbols) visited by the machine. Let T be the set of
all traces

Definition (Oprocha (2006))

H(M) = H(T ) = lim
1
n

log |Tn|

where Tn are all possible words of length n of the trace

Note: The machine in the example has zero entropy (any word of Tn
has “few” symbols b)
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In this talk

Theorem
Entropy and speed are computable for one-tape Turing machines.
That is, there is an algorithm, that given every ε, can compute an
approximation upto ε.
Furthermore, the speed is always a rational number

Plan of the talk
Link between entropy and speed
Some technical lemmas
Graphs
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Comments

Surprising, usually every dynamical quantity is semi-computable
but not computable
The speed is not computable as a rational number.

Starting from M, we can effectively produce a TM M ′ for which
S(M ′) ∼ 2−t where t is the number of steps before M halts on
empty input.

There is no algorithm to decide if the entropy is zero.
None of the techniques work with multi-tape TM. The entropy is
not computable anymore.
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Plan

1 Entropy vs Speed

2 Main idea

3 Core of the proof
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Entropy = Complexity

Kolmogorov complexity K (x) of a word x is the size of the
smallest program that outputs x
The (average) complexity of a infinite word u is

K (u) = lim sup
K (u1...n)

n

(same with K (u))

Theorem (Brudno 1983, see also Simpson 2013)
For a subshift T ,

h(T ) = max
u∈T

K (u) = max
u∈T

K (u)

(More exactly, the maximum is reached µ-a.e, for µ ergodic of maximal
entropy)
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Consequences

Proofs for entropy and speed are relatively the same.
We will deal with speed in the talk.
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Plan

1 Entropy vs Speed

2 Main idea

3 Core of the proof
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The goal

S(M) = max
c∈C

s(c) = inf
n

sup
c

sn(c)

n

S(M) (and H(M)) is computable from above due to the last definition.
We need to prove it is computable from below.
We need lower bounds on the speed and the entropy.
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Main idea

T (c)=(q1,a)(q2,b)(q1, c)(q1,a)(q3,a)(q1, c)(q3, c)(q1,a)(q2, c)(q3,b). . .
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Main idea
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Main idea

0 1 2 1 2 3 2 1 2 3
T (c)=(q1,a)(q2,b)(q1, c)(q1,a)(q3,a)(q1, c)(q3, c)(q1,a)(q2, c)(q3,b). . .
T (c)=(q1,a)(q2,b)(q1, c)(q1, ◦)(q3, ◦)(q1, c)(q3, ◦)(q1, ◦)(q2, ◦)(q3, ◦). . .

Deleted information can be recovered (no loss in Kolmogorov
complexity)
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Main idea

0 1 2 1 2 3 2 1 2 3
T (c)=(q1,a)(q2,b)(q1, c)(q1,a)(q3,a)(q1, c)(q3, c)(q1,a)(q2, c)(q3,b). . .
T (c)=(q1,a)(q2,b)(q1, c)(q1, ◦)(q3, ◦)(q1, c)(q3, ◦)(q1, ◦)(q2, ◦)(q3, ◦). . .

0→1 1→2 2→1 1→2 2→3 3→2 2→1 1→2 2→3 3→4 . . .
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0→1 1→2 2→1 1→2 2→3 3→2 2→1 1→2 2→3 3→4 . . .

T ′(c) = aq1bq2q1q2q3q1cq3q1q2cq3
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Main idea

0 1 2 1 2 3 2 1 2 3
T (c)=(q1,a)(q2,b)(q1, c)(q1,a)(q3,a)(q1, c)(q3, c)(q1,a)(q2, c)(q3,b). . .
T (c)=(q1,a)(q2,b)(q1, c)(q1, ◦)(q3, ◦)(q1, c)(q3, ◦)(q1, ◦)(q2, ◦)(q3, ◦). . .

0→1 1→2 2→1 1→2 2→3 3→2 2→1 1→2 2→3 3→4 . . .

T ′(c) = aq1bq2q1q2q3q1cq3q1q2cq3

T ′(c) = aq1bq2q1q2q3q1cq3q1q2cq3

In the rest of the talk, states will be colored
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Main idea

T ′(c) is well defined when c matters.
The speed on c is the average number of boxed symbols.
The complexity of c is the average of the complexity of T ′(c).
The speed and the complexity are easier to compute using T ′.
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Lemma 1

If c is of maximum speed/entropy, then M will visit each cell finitely
many times.

If the TM zigzags on input c, then it is losing time.

Corollary
T ′(c) is well defined.
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Lemma 2

Let c of maximum speed/entropy.
Let fn be the first time we visit cell n, and ln the last time we visit cell n
Then fn ∼ ln

Corollary
The speed on c is the average number of boxed symbols.

The position pn where the n-th boxed symbol appear satisfy
fn ≤ pn ≤ ln
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Plan

1 Entropy vs Speed

2 Main idea

3 Core of the proof
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Now we explain why this T ′ helps.
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The subshift

Let S be the subshift generated by all T ′(c).
Points in S that are not of the form T ′(c) have smaller
speed/entropy.
S can be described explicitely.
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Formal definition

We define L and R inductively

(cRε, ε,a) ∈ L

If by reading a from state q, we write b, go right in state q′

(qw ,q′w ′,a) ∈ L ⇐⇒ (w ,w ′,b) ∈ R

If by reading a from state q, we write b, go left in state q′

(qq′w ,w ′,a) ∈ L ⇐⇒ (w ,w ′,b) ∈ L

(Similar definition for R).
Now S is the set of all words where all factors of the form awbw ′c
satisfy (w ,b,w ′) ∈ L
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Cut and Paste lemma

States are synchronizing (magic) words.
If xawc and dwby are valid, then xawby is valid.

In some way, S can be seen as the set of paths over an infinite graph
(where states represent vertices).
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Key lemma

For a word c, denote by s(c) its average number of boxed symbol, and
K (c) its average complexity.
Let Sn be the subshift of S that forbids more than n consecutive states.
Then

S(M) = sup
c∈S

s(c) = sup
n

sup
c∈Sn

s(c)

H(M) = sup
c∈S

K (c) = sup
n

sup
c∈Sn

K (c)
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Proof

Let c that achieves the maximum s(c) = α > 0 and n big enough
c may contain more than n consecutive states, but this should not
happen so often
Use the cut and paste property to replace these parts by some
with a smaller number of consecutive states

If done properly, this will not decrease the speed, and only slightly
decrease the complexity.
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Proof

S(M) = sup
c∈S

s(c) = sup
n

sup
c∈Sn

s(c)

H(M) = sup
c∈S

K (c) = sup
n

sup
c∈Sn

K (c) = sup
n

H(Sn)

Sn is a computable sequence of subshifts of finite type, so we can
compute an increasing sequence of reals that converges to H(M).
We can say better for the speed
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The speed

The speed is a rational number, and is achieved for some Sn by a
periodic configuration

In each Sn, the maximum number of boxed symbols is achieved for a
periodic configuration cn. Let W be the set of states that appear in cn.

Each w ∈W appears only once in the period of cn.
If |W | is too big, there will be many big words in W , so the speed
will be too small.
Hence |W | contains at most b words for some b.
If one of them is bigger than c, then the speed is at most b

c−b
hence c is also bounded.
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Open problems

Characterize entropies of one-tape Turing machines.

The numbers are computable, and it cannot be all computable
numbers.

Find how to compute the average speed.

Find a Turing machine with two tapes for which the entropy (resp.
speed) is not a computable number.
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